Mentre l’eruzione in Islanda continua imperterrita modificando pesantemente il paesaggio al suo intorno ma è abbastanza ignorata dai media europei, l’eruzione del Cumbre Vieja alle Canarie godo di ampia copertura a causa della sua spettacolarità e dei seri danni che sta provocando. Ovviamente non manca una componente emozionale a proposito del rischio tsunami che potrebbe essere generato da una frana lungo l’acclive margine del vulcano, per non parlare della questione "nube tossica". A causa della complessità del tema ho in programma di scrivere due post, il primo – questo – su un inquadramento geologico e vulcanologico dei magmi delle Azzorre e spero di avere il tempo di scrivere anche un post specifico sul rischio – frane. Perchè occorrerebbe mettere un attimo in ordine le cose e dare una informazione corretta in materia. Come occorre accennare alla questione dei rischi provocati della “nube tossica”, sia pure brevemente perché la cosa non meriterebbe che un commento marginale: no, per questa eruzione non pioverà acido solforico da cielo, tantomeno l’aria diventerà irrespirabile, almeno a distanza.
il moto parallelo del vulcanismo di Madeira e delle Canarie, modificato da Geldmacher et al 2005 |
Le Isole Canarie formano insieme alle Isole Selvagen e alle montagne sottomarine a NE (Lars, Anika e Dacia), una dorsale di origine vulcanica lunga 800 km e larga 450 km la cui età decresce da NE (∼68 Ma, Lars Seamount) a SW; per questo viene interpretato come la traccia di un punto caldo sottostante nel mantello, come la parallela dorsale di Madeira rappresenta la traccia di un altra e vicina risalita di materiale dal mantello.
Il basamento su cui si è formata la traccia degli hotspot è la crosta oceanica giurassica messasi in posto all’epoca dell'apertura dell'Oceano Atlantico centrale, 180-200 milioni di anni fa, mentre la zona di transizione oceano-continente sembra essere situata ad est delle Isole Canarie sulla base di studi sugli xenoliti del mantello litosferico (Neumann et al., 2004). Il movimento della placca sopra il punto caldo è lento (<2 cm/anno) e di conseguenza, rispetto ad esempio ai vulcani hawaiani l’attività tende ad essere più longeve nella singola isola; inoltre alle Canarie – sempre rispetto alle Hawaii – la rigidità maggiore della crosta oceanica sottostante limita la velocità di subsidenza e quindi queste isole rimangono emerse molto più a lungo rispetto all’analogo pacifico. Altra differenza è che sono contemporaneamente attivi vulcani in isole diverse e lontane fra loro.
i magmi della provincia magmatica circum-mediterranea – da Lustrino (2010) |
Annoto che rispetto alla (peraltro magistrale) sintesi di Lustrino non sono d’accordo solo sull’Etna, che considero invece, analogamente ad altri Autori, strettamente legato al margine della subduzione della crosta oceanica dello Ionio sotto il Tirreno e quindi tutt’altro che anorogenico (Farolfi, Piombino e Catani 2019).
la formazione di una catena di isole vulcaniche dovute al passaggio della crosta ocenica sopra un punto caldo del mantello |
Abbiamo visto che il magmatismo delle Canarie deriva da un punto caldo, un pennacchio dove la risalita di materiale del mantello peridotitico ne provoca la fusione parziale a causa della decompressione e dalla temperatura più alta del normale. Tuttavia, il tasso di produzione di magma è inferiore rispetto alla media degli hotspot di questo tipo.
In particolare non sembra che ci siano serbatoi magmatici poco profondi di lunga durata. A La Palma le analisi mineralogiche e geochimiche evidenziano questo processo di messa in posto delle lave (Thiele et al, 2020):
- i magmi si accumulano e cristallizzano parzialmente all'interno di serbatoi profondi e longevi nel mantello superiore a profondità compresa fra 20 e 30 km
- successivamente si portano per un periodo di tempo molto più breve (settimane o mesi) nel mantello superiore o nella crosta inferiore a 10–15 km di profondità
- infine migrano verso l'alto lungo fratture che si propagano velocemente per eruttare
Per Gurenko et al (2011), altre analisi geochimiche e mineralogiche di altro tipo hanno evidenziato che nel mantello che fra le componenti del mantello che origina i magmi di Madeira c’è anche una una crosta subdotta nel mantello più giovane di 1 miliardo di anni, mentre alle Canarie ci sono anche una crosta subdotta ancora più vecchia e un contributo proveniente dalla litosfera subcontinentale africana.
Immagino che i resti della crosta più giovane contenuti nei magmi di Madeira provengano da quella che è andata in subduzione durante l’orogenesi Varisica, durante lo scontro fra Euramerica e Gondwana, uno dei contributi fondamentali per la formazione della Pangea. Infatti nell’episodio importante precedente, la formazione del supercontinente di Rodinia, la collisione fra Amazonia e Baltica è avvenuta in un’area che, in termini geografici attuali, è posta più a nord di questa (Cawood et al 2016).
L'ISOLA DI LA PALMA. La Palma, lunga circa 50 km è una delle isole più giovani dell'arcipelago delle Canarie e quella più a nord-ovest. Le serie vulcaniche si sono messe in posto in successione sopra un basamento costituito dai resti di una montagna basaltica sottomarina del Pliocene (~ 4–2 Ma – direi i resti di un un grande vulcano a scudo) che affiorano ancora nel'area della caldera del Taburiente (o, meglio sono riaffiorati a causa dell'evento calderico). I vulcani constano in una successione di edifici sub-aerei: da nord a sud Garafia (~ 2-1,2 Ma), sul quale si è parzialmente impostato il Taburiente (1,2–0,56 Ma), Bejenado (0,56–0,49 Ma), e quello attule, il Cumbre Vieja (0,56 Ma ad oggi), uno dei più attivi delle Canarie. Si nota quindi una propagazione verso sud del vulcanismo, in armonia con uno scorrimento della placca sottostante verso nord.
Il vulcano attuale, di forma allungata orientata N-S, risale a circa 125.000 anni. Le eruzioni degli ultimi 7.000 anni hanno formato una ampia serie di coni di cenere e crateri lungo l'asse. Le colate laviche sono invece alimentate da fenditure e scendono rapidamente verso il mare approfittando della forte pendenza, come è successo nel 1585, 1646, 1712, 1949 e 1971.
Ciascuno di questi edifici vulcanici è separato da quello che lo circonda da discordanze molto importanti, generalmente legate a eventi di crollo di grandi edifici. Ad esempio il Garafia dovrebbe essere crollato a sud-ovest a ~ 1,2 Ma, formando una grande depressione che è stata rapidamente riempita dal Volcán Taburiente, lungo il quale il vulcanismo è migrato verso sud, estendendo il fianco meridionale dell'edificio e formando una cresta allungata, orientata a N-S. Questa cresta collassò verso ovest poco più di 500.000 anni fa, dopo di che inizio la formazione del Bejenado. In seguito, continuando come si è visto a migrare verso sud il vulcanismo, ha iniziato a formare il Cumbre Vieja.
L'isola di La Palma è ancora in una fase di costruzione degli scudi, ed è stato ipotizzato che il lato occidentale dell'isola si trovi su una preesistente zona di debolezza che può nucleare rotture. Ma di questo parlerò in un secondo post.
La questione frane e tsunami merita appunto un post che mi impegno a scrivere nonostante il periodo incasinatissimo. Ma ceneri e presunta nube tossica meritano un accenno veloce, visto quello che si legge in giro.
esempio di carta della distribuzione delle emissioni di SO2 in Islanda |
L’eruzione attuale in Islanda nella penisola di Reykjanes ha dato e sta dando qualche problemino in più perché rispetto a quella del Bardarbunga in questa eruzione si mettono in posto magmi più primitivi, cioè magmi che non sono rimasti a lungo in una camera magmatica: durante la residenza dei magmi in un serbatoio a bassa profondità, i gas tendono ad uscire dal fuso e a risalire. Quindi le lave che eruttano successivamente ad una permanenza a bassa profondità in un serbatoio hanno un tenore di gas minore rispetto a quelle che risalgono senza fermarsi o quasi, come succede ora in Islanda dove proprio per la risalita rapida da grande profondità del magma i gas sono molto maggiori e il servizio meteo islandese aggiorna in tempo reale la situazione. Ma nessuno, con quantitativi di magma e di gas maggiori che a La Palma invoca la fine di Reykjavik, posta a poche decine di km da Fagradalsfjall.
Carta del tenore atmosferico di SO2 di Copernicus. L'unità di misura è diversa (e meno "immediata") che in Islanda |
Se in Islanda nessuno si preoccupa un gran chè per i gas dell'eruzone in corso al Fagradalsfjall, perchè preoccuparsi in Italia per un quantitativo così basso proveniente dalle Canarie? Dopodichè: tutti questi allarmi sono dati da vari media. Avete visto un esponente del mondo scientifico ad inviarli?
Sono stufo di sentire queste sciocchezze....
PS: Se comunque a migliaia di km dalle colate non ci sono problemi, ma neanche a qualche decina, è probabilmente non troppo igienico portarsi vicino alle colate, specialmente nella zona in cui queste raggiungono il mare, perchè tra la lava calda e l'acqua marina potrebbero innescarsi delle reazioni che portano alla formazione di gas "non simpatici" (ricordo che in mare circa il 3% del peso è formato da ioni disciolti). Comunque, appunto, allontanandosi dalla colata il rischio decade velocemente...
Barker et al 2015 The magma plumbing system for the 1971 Teneguía eruption on La Palma, Canary Islands Contrib Mineral Petrol (2015) 170:54 DOI 10.1007/s00410-015-1207-7
Cawood et al 2016 Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles Earth and Planetary Science Letters 449 (2016) 118–126
Farolfi, Piombino e Catani 2019 Fusion of GNSS and Satellite Radar Interferometry: Determination of 3D Fine-Scale Map of Present-Day Surface Displacements in Italy as Expressions of Geodynamic Processes Remote Sens. 11, 394; doi:10.3390/rs11040394
Geldmacher et al 2005 New 40Ar/39Ar age and geochemical data from seamounts in the Canary and Madeira volcanic provinces: Support for the mantle plume hypothesis Earth and Planetary Science Letters 237/1–2 85-101
Gurenko et al 2013 A composite, isotopically-depleted peridotite and enriched pyroxenite source for Madeira magmas: Insights from olivine Lithos 170-171, 224–238
Lustrino (2010) What ‘anorogenic’ igneous rocks can tell us about the chemical composition of the upper mantle: case studies from the circum-Mediterranean area. Geol. Mag. 148(2), 304–316.
Neumann et al, 2005. N-MORB crust beneath Fuerteventura in the easternmost part of the Canary Islands: evidence from gabbroic xenoliths. Contributions to Mineralogy and Petrology 150, 156–173
Thiele et al 2020 Dyke apertures record stress accumulation during sustained volcanism. Scientific reports 10:17335
Torsvik et al. 2006 Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle Geophys. J. Int. 167, 1447–1460