giovedì 12 febbraio 2026

La formazione di caldere nei vulcani con lave basaltiche


la caldera del Kilauea (Hawaii). il "vulcano basaltico" per definizione
con una eruzione all'interno
 
Dall’emissione esplosiva di cenere e altri materiali più grossolani o riversando fiumi di lava a valle, i vulcani possono eruttare in molti modi, Se la fuoriuscita di magma precedentemente immagazzinato nella camera magmatica è sufficientemente elevata, il terreno sovrastante al serbatoio del vulcano può collassare. La struttura risultante, nota come caldera, può essere larga chilometri e profonda centinaia di metri.
Sono comprensibilmente famose le enormi eruzioni che hanno formato caldere in vulcani con magmi ad alto tenore di silice come Yellowstone o Toba. Tuttavia anche i vulcani con magmi a basso tenore di silice, a composizione basaltica e quindi più fluidi e più caldi, che come è noto mostrano in genere una minore propensione ad eruzioni esplosive, sono in grado di produrre eruzioni che possono evolvere nella formazione di una caldera. Anzi, quello di produrre cicli di formazione o collasso di una caldera è un comportamento molto diffuso fra i vulcani basaltici e la storia di molti di essi è costellata da più cicli di questo tipo, sia a livello di una singola eruzione, sia a lungo termine, con durata di decenni o secoli, indipendentemente dalla produzione di eruzioni “minori”.  Da ultimo occorre notare come anche le eruzioni che formano caldere nei vulcani basaltici possono innescare gravi problemi ambientali in un loro intorno significativo, a dimensione regionale.

La percezione secondo la quale un vulcano basaltico significa solo tranquille emissioni di lava con limitate emissioni di ceneri e lapilli gode di ampia popolarità ma non è vera, e questo vale specialmente quando le eruzioni coinvolgono la formazione di una caldera. Tutti i collassi storici di caldere basaltiche si sono verificati in modo incrementale nel corso di giorni o mesi attraverso una serie simile di crolli improvvisi e semiperiodici del fondo della caldera. A causa della gradualità del processo, molto maggiore rispetto a quelle dei vulcani con magmi a maggior tenore di silice queste eruzioni possono essere studiate più da vicino e più dettagliatamente.

l'eruzione del Bardarbunga nel 2014: il magma si è fatto strada
nella crosta lungo una frattura, arrivando in superficie a 40 km dal vulcano
 
I RISCHI PORTATI DALLE ERUZIONI CALDERICHE IN VULCANI BASALTICI. Ovviamente anche nei vulcani basaltici la formazione di una caldera rischia di diventare un problema perché si tratta di eventi tutt’altro che “tranquilli”, visto che possono interessare aree a decine di chilometri di distanza con effetti devastanti sulle comunità locali:
a) si possono produrre terremoti di Magnitudo fino a 6, associati a quantità di energia relativamente elevate in periodi prolungati, generando delle deformazioni in tutta l’area limitrofa al vulcano
b) le esplosioni sono ricche di cenere e lapilli, spesso in grado di generare pennacchi di cenere alti diversi chilometri
c) le emissioni di gas sono ricche in special modo di CO2 e SO2
d) normalmente la formazione di una caldera in un vulcano basaltico è preceduta da un fenomeno molto caratteristico: il magma si propaga anche molto lontano lungo direttrici contrassegnate da fratture preesistenti e può scaricare lava a centinaia di metri cubi al secondo per settimane a distanza di decine di km dal vulcano.

il Piton de la Fournaise nell'isola di Reunion, con le sue numerose caldere
RECENTI ERUZIONI CON COINVOLGIMENTO DELLA CALDERA IN VULCANI BASALTICI. A dimostrazione della frequenza con la quale i vulcani con magmi basaltici possono formare caldere, dalla fine degli anni '60 se ne sono verificati ben sei: Fernandina (Isole Galápagos, 1968), Tolbachik (Kamchatka, 1975), Miyakejima (Arco di Izu – Bonin, 2000), Piton de la Fournaise (Réunion, 2007), Bárðarbunga (Islanda, 2014-2015) e Kīlauea (Hawaii, 2018).
I sistemi magmatici e tettonici possono essere strettamente interconnessi su un'enorme gamma di scale spaziali e temporali e in modi che possono dare origine a pericoli complessi e difficili da prevedere. Ad esempio,
  • Tolbachik (1975): l’eruzione laterale ha provocato un abbassamento di 400 metri della sommità del vulcano (Fedotov et al, 2015)
  • Kīlauea (2018): l'iniezione di magma nella zona di rift orientale del vulcano ha innescato un terremoto di magnitudo 6,9 alla base del vulcano che ha ridotto lo stress compressivo sulla zona di rift, facilitando a sua volta un aumento del flusso sotterraneo di magma (Neal et al, 2019)
  • Piton de la Fournaise (2007): il collasso è stato associato a uno spostamento su scala metrica del fianco orientale del vulcano (Froger et al, 2015) 
  • Miyakejima (2000): gli abitanti furono evacuati nel settembre 2000 e potettero far ritorno stabilmente nell'isola solo nel febbraio 2005
  • Bárðarbunga (2014): il dicco che ha innescato il collasso si è propagato su una distanza di 45 chilometri a una velocità e lungo una direzione influenzate dalla topografia e dagli stress tettonici. Questo processo è stato studiato in tempo reale prima che il magma arrivasse in superficie (ne ho parlato qui). Essendo il vulcano nascosto sotto la spessa coltre del ghiacciaio del Vatnajokull, il fenomeno è stato monitorato solo attraverso i dati della sismicità. In molti casi queste intrusioni, come nel 2014, sono arrivate in superficie, alimentando eruzioni fessurali e colate laviche a lunga distanza (Glastonbury-Southern et al, 2022)
Di fatto a parte quella del Kilauea queste eruzioni si sono verificate in aree sostanzialmente poco popolate, e quindi i dati a disposizione non sono tanti (per il Bardarbunga i dati ci sono, ma appunto il fatto che il vulcano si trovi sotto il ghiacciaio ha impedito molte osservazioni). Le ampie osservazioni derivanti dal monitoraggio in tempo reale del Kīlauea del 2018 hanno contribuito a rivelare nuovi aspetti della struttura e del comportamento del vulcano. Questa eruzione ha distrutto centinaia di case in uno dei disastri vulcanici più costosi nella storia degli Stati Uniti.
Sempre parlando di effetti sulle popolazioni, i non troppo numerosi abitanti dell'isola giapponese di Miyakejima hanno atteso diversi anni per rientrare a casa.
E se una eruzione come quella del Bardarbunga del 2015, nella quale oltre 1 km cubo di lava è stata essa in posto a decine di km dal vulcano fosse avvenuta in un’area popolata sarebbe stata un problema di non trascurabile importanza (ne ho parlato diverse volte, per esempio qui).

la formazione di un dicco laterale prima della formazione di una caldera
in un vulcano basaltico (Anderson et al, 2025)
COME SI SONO FORMATE LE CALDERE? Durante le eruzioni che provocano la formazione di una caldera:
  • vengono emessi importanti volumi di lave 
  • spesso nell’evoluzione del processo la composizione dei magmi può cambiare, dimostrando come in situazioni del genere nuovo magma proveniente da serbatoi più profondi possa mescolarsi con il magma precedentemente immagazzinato nella camera magmatica. 
In tutti e sei gli ultimi casi, i collassi sono stati inoltre preceduti dall'intrusione laterale di magma nella crosta circostante, che si sono propagate fino a decine di chilometri. È proprio questo processo che drena il magma dalla camera magmatica e innesca i collassi.
Questi punti in comune suggeriscono processi simili. Il modello concettuale generale del ciclo a breve termine di collasso / riempimento è emerso dopo l’eruzione di Fernandina del 1968 (Simkin e Howard, 1970) ed è stato successivamente perfezionato e quantificato utilizzando le osservazioni degli eventi successivi e prevede questa sequenza di massima (Gudmunsson, 2008):
le fratture che guidano il "pistone" che scende o sale in base
alla pressione del magma nella camera magmatica (Gudmunsson, 2008
)

1. la fuoriuscita del magma svuota parzialmente la camera magmatica, riducendo il supporto per la crosta sovrastante
2. di conseguenza, nella crosta si formano faglie anulari, che individuano al loro interno un blocco con una forma che ricorda quella di un pistone.
3. La forza di gravità fa scivolare questo blocco bruscamente verso il basso nel serbatoio magmatico fino a quando si stabilizza. In questo modo il pistone aumenta di nuovo la pressione nel serbatoio, provocando un incremento del deflusso del magma, talvolta di livello tale da provocare ondate di eruzioni laviche fino a decine di chilometri di distanza lungo le fratture radiali.
4. Il continuo deflusso di magma riduce nuovamente la pressione del serbatoio, preparando il terreno per un altro improvviso collasso del pistone.
5. Naturalmente può succedere che nuovo magma affluisca dal basso nel serbatoio magmatico. In questo caso la ripressurizzazione innesca sismicità o addirittura, come è successi nel Bárðarbunga nel 2015, persino un movimento inverso con il pistone che si solleva

Di conseguenza i collassi della caldera sono collegati a importanti cambiamenti nell'attività eruttiva e nei rischi
Nell’isola di Hawaii gli abitanti se ne sono resi conto nel 2018, quando al Kilauea tra maggio e agosto sono stati registrati oltre 70.000 terremoti M>0, di cui 54 M≥5, compreso il M 6.9 del 4 maggio. 
Al Piton de la Fournaise, il crollo del 2007 ha ridotto il periodo di unrest che ha preceduto le eruzioni successive, ha portato a un aumento del numero di intrusioni di dicchi ed ha aumentato la percentuale di parossismi in prossimità della sommità (Froger et al,   2015)
Le analisi geochimiche dei periodi precedenti e successivi al collasso indicano che il movimento del pistone può influenzare fortemente la struttura della camera magmatica principale e di quelle più superficiali eventualmente presenti.

STUDI SULLE FASI PRE-CALDERICHE PER COMPRENDERE I PROCESSI CHE INFLUISCONO SU QUESTE ERUZIONI. Grazie a monitoraggi sismici, geodetici, geochimici e gravimetrici e agli approcci investigativi, ulteriori informazioni provengono dalle osservazioni sui vulcani che non hanno subito collassi calderici in tempi storici nonostante abbiano mostrato una notevole instabilità e attività eruttiva, come l'Ambrym (Vanuatu), il Sierra Negra (Galápagos), l'Axial Seamount (a largo della costa NW degli USA) e diversi vulcani delle Canarie. Queste osservazioni chiariscono ulteriormente le modalità e i tempi dell'accumulo di magma nei sistemi calderici, le interazioni dinamiche tra processi magmatici e tettonici e le varie condizioni che contribuiscono ad innescare l'inizio del collasso.

Ci sono comunque ancora delle domande fondamentali che rimangono senza risposta, in particolare:
  1. perché alcune intrusioni innescano il collasso della caldera e altre no?
  2. la diversità delle sequenze di collasso tra i diversi vulcani,
  3. perché e come terminano queste eruzioni.

Possibili correlazioni fra gli episodi di collasso calderico
e l'evoluzione umana (Franceschini et al, 2014)
FORMAZIONE DI CALDERE NELLA PARTE ORIENTALE DEL RIFT AFRICANO  E I PRIMI UOMINI. Nella zona dell’Afar e nei suoi dintorni la letteratura descritti due periodi di intenso vulcanismo esplosivo basaltico: 
  • il primo intorno a 3,5 milioni di anni fa durante il Pliocene, dominato da una voluminosa eruzione, il cui deposito è conosciuto come Munesa Crystal Tuff (MCT) 
  • il secondo è molto più recente, del tardo Pleistocene (tra 300 e 170 mila anni fa), ed è caratterizzato da eruzioni in almeno quattro distinti complessi vulcanici che hanno dato origine ad imponenti caldere ad Aluto, Corbetti, Shala e Gedemsa
Recentemente Franceschini et al (2024) hanno identificano nella prima fase fase almeno cinque diverse coltri ignimbritiche, estremamente simili tra loro e messe in posto in un intervallo di tempo compreso tra 3,85 e 3,41 Ma, alcune delle quali caratterizzate da depositi spessi decine/centinaia di metri.

Questi risultati suggeriscono che fra le conseguenze di questa attività vulcanica nella Rift Valley ci possa essere stato un impatto sull’ambiente tale da modificare i percorsi migratori e le strategie di sopravvivenza dei primi ominidi.

Infatti, rispetto ad una singola grande eruzione isolata, l’effetto cumulativo di molteplici grandi eruzioni susseguitesi in un intervallo di tempo limitato potrebbe aver comportato un impatto ambientale ancora più grande, non lasciando i necessari tempi di recupero all’ambiente tra un evento e l’altro.

BIBLIOGRAFIA

Anderson et al (2025). Lessons and lingering questions from collapsing basaltic calderas. Eos, 106

Fedotov et al (2015). Seismic Processes and Migration of Magma during the Great Tolbachik Fissure Eruption of 1975–1976 and Tolbachik Fissure Eruption of 2012–2013,
Kamchatka Peninsula. Geofizicheskie Protsessy i Biosfera, 13/3, 5–30.
 
Franceschini et al (2024). Pulsatory volcanism in the Main Ethiopian Rift and its environmental consequences. Communications earth & environment https://doi.org/10.1038/s43247-024-01703-1 

Froger et al (2015). Time-dependent displacements during and after the April 2007 eruption of Piton de la Fournaise, revealed by interferometric data.  J. Volcanol. Geotherm. Res. 296, 55–68

Glastonbury-Southern et al (2022). Ring fault slip reversal at Bárðarbunga volcano, Iceland: Seismicity during caldera collapse and re-inflation 2014–2018. Geophys. Res. Lett., 49, e2021GL097613 

Gudmundsson (2008). Magma-Chamber Geometry, Fluid Transport, Local Stresses and Rock Behaviour During Collapse Caldera Formation. Developments in Volcanology 10, 313-349      

Neal et al (2019). The 2018 rift eruption and summit collapse of Kīlauea volcano, Science, 363, 367–374 
        
Simkin e Howard (1970). Caldera collapse in the Galápagos Islands, 1968. Science, 169, 429–437   





Nessun commento: