martedì 27 febbraio 2024

La Large Igneous Province di Alborz e l'estinzione di massa della fine dell'Ordoviciano: l'ultimo collegamento che mancava fra una estinzione di massa e la messa in posto di una LIP


Il collegamento fra quattro delle 5 maggiori estinzioni di massa e la messa in posto di Large Igneous Provinces (LIP) è ormai acclarato da tempo. Per quanto riguarda invece la fine dell’Ordoviciano, fino ad oggi non c’era una LIP corrispondente e quindi si sono scatenate le ipotesi extraterrestri più varie (asteroide, supernova etc etc), che però non spiegano i parametri geochimici dei sedimenti dell’epoca. Un lavoro ha finalmente identificato nell’Iran settentrionale la large igneous province di Alborz, databile appunto all’Ordoviciano superiore, evidenziando quindi l’ultimo collegamento mancante fra una LIP e una importante estinzione di massa, nella quale è scomparso l’85% delle specie viventi, risolvendo un problema che si è trascinato per decenni.

LARGE IGNEOUS PROVINCES ED ESTINZIONI DI MASSA. Le Large Igneous Provinces sono delle enormi serie magmatiche, dell’ordine delle centinaia di migliaia se non di milioni di km cubi di magmi, che si mettono in posto in tempi geologicamente brevi. C’è una ampia letteratura che dimostra il legame fra queste enormi eruzioni e gli eventi di estinzione di massa, ad esempio i Trappi della Jacuzia per l’estinzione del Devoniano superiore, i trappi siberiani per la fine del Permiano, i basalti dell’Atlantico centrale per la fine del Triassico e i trappi del Deccan per la fine del Cretaceo (quest’ultimo caso piaccia o non piaccia ai sostenitori dell’asteroide – killer). Anche le estinzioni “minori” sono avvenute in corrispondenza di eventi vulcanici di quel tipo (Kasbohm et al., 2021), per esempio l'estinzione del Cambriano inferiore (basalti di Kalkarindji), del Permiano medio (trappi di Emeishan), gli eventi anossici del Cretaceo (diversi plateau oceanici),   il passaggio Paleocene - Eocene (basalti dell'Atlantico settentrionale). Sono stati proposti diversi meccanismi per spiegare l’associazione fra LIP ed estinzioni di massa, fra i quali i più importanti sono un raffreddamento globale nelle fasi iniziali dell’attività dovuto a importanti emissioni di polveri che loccno la radiazione solare, il riscaldamento globale in corrispondenza del parossismo di attività dovuto alle emissioni di CO2 e SO2, l’anossia nei mari, il rilascio di gas tossici o metalli, l’acidificazione degli oceani e delle piogge. Una sintesi la potete leggere in Ernst et al. (2021). Ho parlato spesso di questo rapporto causa - effetto sia su Scienzeedintorni che sul mio libro "il meteorite e il vulcano, come si estinsero i dinosauri". 

la breve durata dei piani dell'Ordoviciano
superiore e del Siluriano inferiore 
dimostra il prolungato turn-over faunistico
UNA GRANDE ESTINZIONE DALLE CAUSE FINORA NON CHIARE. L'estinzione di massa del tardo Ordoviciano, a causa della sua drammatica perdita di specie, è ampiamente considerata come la seconda più grande delle "Big Five", i 5 maggiori eventi di estinzione di massa del Fanerozoico, a partire dal lavoro di Raup e Sepkoski (1982). 
Come ho scritto, questa estinzione ha avuto finora la particolarità di essere l'unica non associata ad una Large Igneous Province, circostanza che ha ovviamente scatenato la corsa alla ricerca di cause extraterrestri (asteroide e supernova in particolare). Ma il perdurare nel tempo dell'elevato turnover faunistico suggerisce un prolungarsi delle cause non proprio compatibile con eventi puntuali come quelli astronomici.

Finalmente qualcosa si è mosso negli ultimi anni, perchè un numero crescente di osservazioni ha suggerito la presenza di una intensa attività magmatica nell’Ordoviciano superiore e nel Siluriano inferiore, contemporaneo quindi al frequente turnover faunistico che caratterizza questa fase della storia della Terra. Per questo molti ricercatori hanno postulato una LIP come fattore scatenante anche dell’evento di fine Ordoviciano. Ad esempio Li et al. (2021) hanno evidenziato in una serie stratigrafica di quella fase nel sud della Cina un nesso causale tra eventi vulcanici, perturbazioni nel rapporto  isotopico di carbonio e zolfo e cambiamenti ambientali durante il tardo Ordoviciano e il primo Siluriano. Di conseguenza, hanno proposto due periodi di intensificato vulcanismo, il primo tra il Katiano e l’Hirnantiano inferiore e il secondo dal tardo Hirnantiano all’inizio del Siluriano. Nel tempo sono state indicate alcune aree di attività vulcanica potenzialmente in grado di provocare queste variazioni (Siberia orientale, Corea del Sud, Argentina, Canada orientale) ma non paiono essere al livello di una large igneous province (Ernst e Youbi, 2017). 

GONDWANA, TERRENI CIMMERICI E PALEOTETIDE. In pratica la tettonica degli ultimi 500 milioni di anni si potrebbe riassumere così: una perdita di pezzi da parte di un supercontinente meridionale aggregatosi circa 500 milioni di anni fa, che a parte l’Antartide a poco a poco si stanno riagglomerando in un continente settentrionale.
Questo continente di 500 milioni di anni fa comprendeva tutti i continenti a parte le masse ora corrispondenti a America settentrionale (Laurentia), Europa Settentrionale (Baltica) e quasi tutta la Siberia ed è noto in genere come Gondwana ma io, seguendo Powell et al (1999), preferisco usare il termine Pannotia, riservando il termine Gondwana solo a quella parte che si è separata nel Mesozoico per dare vita ai singoli continenti meridionali attuali (ne ho accennato qui)
Nell’Ordoviciano inizia uno dei principali eventi di fratturazione del supercontinente, con il distacco dei “terreni cimmerici”, e cioè una gran parte dei blocchi che ora formano Turchia, Azerbaijan, Iran, Afghanistan e Tibet. Fra questi e il Gondwana si formerà la Paleotetide. Questi terreni poi si sono scontrati nel Triassico con il Kazhakstan e altri blocchi per formare l’Asia. La collisione fra i terreni cimmerici e il Kazakhstan ha provocato la formazione nel Triassico dell’orogene dei Monti Alborz, che si estende in modo sinuoso per circa 2000 km dal Piccolo Caucaso dell'Armenia e dell'Azerbaigian a ovest fino al Kopet-Dagh che segna il confine fra Iran e Turkmenistan, ai Monti Paropamisus dell'Afghanistan settentrionale. In seguito la Paleotetide è stata chiusa nl Terziario quando altre parti del vecchio supercontinente, Afro-Arabia e India, si sono nuovamente uniti ai terreni cimmerici ormai amalgamati nell’Asia (ne ho parlato sempre nel post linkato prima).

l'orogene triassico di Alborz con in rosso le aree studiate da Derakhshi et al (2022
LA (NUOVA) LARGE IGNEOUS PROVINCE DI ALBORZ. Nell'Iran settentrionale la letteratura scientifica ha documentato una vasta serie di magmi, in genere alcalini, messi in posto in un ambiente intraplacca tra l’Ordoviciano medio e il Siluriano, con degli impulsi coevi con le tracce di magmatismo trovate in Cina e non solo. Sono distribuiti su una lunghezza di 1700 km e in alcuni casi il loro spessore è superiore ai 1000 metri. 
  • Questa attività era già stata messa in relazione con il rift continentale che alla fine ha portato all'apertura della Paleotetide. 
  • Derakhshi et al (2022) hanno unito tutti questi magmi in una Large Igneous Province che chiamano LIP di Alborz. 

Dobbiamo inoltre notare che  il periodo che precede l'apertura di un nuovo bacino oceanico rappresenta le condizioni geodinamiche ideali per la formazione di Large Igneous Provinces (e in genere di un magmatismo abbondante, come è successo ad esempio dal passaggio Permiano - Triassico e fino al passaggio Paleocene - Eocene prima delle separazioni fra continenti chge hanno guidato la formazione dell’Oceano Atlantico e dell’oceano Indiano e quindi la fratturazione del Gondwana.
Per quanto riguarda la tempistica degli eventi più che delle datazioni assolute sono importanti quelle relative, in particolare ai limiti dei piani in cui è diviso l’Ordoviciano. Nei sedimenti dell’area gli Autori evidenziano una correlazione temporale fra le anomalie del mercurio, legate alla attività magmatica e l'evento di estinzione di massa del tardo Ordoviciano. Inoltre nel Darriwilliano inizia un significativo declino globale del rapporto 87Sr/86Sr: si tratta di una tipica sintomatologia  derivante da un alto tasso di alterazione chimica dei silicati dovuti alla maggior acidità dell’atmosfera e delle acque, evidentemente innescata dalle emissioni di CO2 e SO2 associate alle eruzioni.
Sulla base del lavoro sul campo, delle età relative e anche delle datazioni radiometriche l'inizio degli eventi vulcanici coincide con l’inizio del Darriwiliano; c’è poi un altro picco di attività vulcanica al passaggio Sandbiano-Katiano, mentre il culmine del vulcanismo avviene durante il tardo Katiano-Hirnantiano. È da notare che la scala geologica dei tempi funziona su base bio-stratigrafica e quindi la durata molto limitata dei piani dell’Ordoviciano superiore (l’Hirnantiano è lungo meno di due milioni di anni!) dimostra l’estrema velocità del turn-over faunistico, che continuerà anche nel Siluriano, fino a quando si concluderà l’attività del rift che ha poi portato - appunto - all’apertura della Paleotetide.

IN CONCLUSIONE: LA LIP DI ALBORZ COME CAUSA DELL’ESTINZIONE DELLA FINE DELL’ORDOVICIANO. Derakhshi et al (2022) forniscono un insieme di prove per le quali i magmi dell’Iran settentrionale costituiscono una Large Igneous Province, la cui attività diventa un valido candidato per l’innesco dei cambiamenti ambientali alla base dell’estinzione di massa della fine dell’Ordoviciano, colmando una importante lacuna nelle connessioni fra eventi biotici ed eventi geologici nella storia della Terra.


BIBLIOGRAFIA

Derakhshi et al (2022), Ordovician-Silurian volcanism in northern Iran: Implications for a new Large Igneous Province (LIP) and a robust candidate for the Late Ordovician mass extinction Gondwana Research Gondwana Research 107 (2022) 256–280

Ernst et al (2021). Large Igneous Province Record Through Time and Implications for Secular Environmental Changes and Geological Time-Scale Boundaries. Chapter 1 In: Ernst, et al (eds.) Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes. AGU Geophysical Monograph 255, pp. 3-26.

Ernst e Youbi (2017). How Large Igneous Provinces affect global climate, sometimes cause mass extinctions, and represent natural markers in the geological record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 478, 30–52.

Kasbohm, et al (2021). Radiometric Constraints on the Timing, Tempo, and Effects of Large Igneous Province Emplacement. In: Ernst et al (eds.) Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes. pp. 27-82.

Kozik et al (2022) Rapid marine oxygen variability: Driver of the Late Ordovician mass extinction , Sci. Adv. 8, eabn8345 (2022)

Li et al, (2021). Carbon and sulfur isotope variations through the Upper Ordovician and Lower Silurian of South China linked to volcanism. Palaeogeogr. Palaeoclimatol. Palaeoecol. 567

Powell et al (1995). Did Pannotia, the latest Neoproterozoic southern supercontinent, really exist?: Eos (Transactions, American Geophysical Union), Fall Meeting,76,46, p.172
3.

Raup e Sepkoski Jr (1982). Mass extinctions in the marine fossil record. Science 215, 1501–1503

 

venerdì 23 febbraio 2024

in base ai modelli fra qualche giorno potrebbe esserci la quarta eruzione in 3 mesi vicino a Grindavik


Dopo una fase introduttiva durata parecchie stettimane tra ottobre, novembre e metà dicembre in cui il poco viscoso magma basaltico ha iniziato a salire dalle profondità della crosta islandese, nella penisola di Reykjanes (e più precisamente nella zona di Grindavik) il leit-motiv di questi ultimi mesi è rappresentato da cicili di accumulo di magma a bassa profondità con sollevamento del terreno (accompagnato anche da qualche collasso), seguiti da una breve eruzione., dopo la quale inizia il nuovo ciclo di “ricarica”. Il ciclo è già avvenuto 3 volte ma ora siamo in vista della quarta eruzione da quella iniziata a metà dicembre. 
Il grafico mostra un confronto del volume di magma accumulato sotto Svartsengi prima che il magma fuoriuscisse vicino a Grindavik durante gli eventi recenti. Il volume è calcolato da un modello basato su dati GPS ed è ovviame soggetto a incertezza. Si possono osservare variazioni significative anche tra i giorni. L'attuale stato di accumulo del magma al 22 febbraio è contrassegnato dalla linea marroncina.  

il grafico dell'andamento del'accumulo di magma dal primo giorno di sollevamento in poi.


L’individuazione del possibile scenario si basa sull'interpretazione dei dati più recenti e sullo sviluppo osservato degli eventi precedenti che sono avvenuti in questi mesi nell'area e ovviamente hanno un certo margine di’incertezza, poiché si basano appunto solo su pochi eventi.
I calcoli basati su questo modello indicano che dalla fine dell’eruzione precedente sotto Svartsengi si sono accumulati circa 5 milioni di metri cubi di magma. Considerando l’andamento degli episodi eruttivi precedenti, la probabilità di un'eruzione è molto alta se e quando il volume raggiungerà gli 8-13 milioni di metri cubi. Sulla base dei calcoli del modello, se il magma continuasse ad accumularsi al ritmo attuale ciò potrebbe verificarsi già all’inizio della prossima settimana.
Va comunque notato che non si può affermare con sicurezza che questo sarà lo scenario reale  e che il comportamento sarà identico a quello degli eventi precedenti, anche se evidentemente la probabilità che avvenga così sono alte. Inoltre, esiste la possibilità che il magma possa migrare sotto Sundhnúkur con l’apertura di un nuvo dicco, trovando spazio senza provocare per adesso l’eruzione.

carta del rischio valida dal 23 al 26 gennaio, al netto di possibili sviluppi

Gli scienziati stimano che in caso di eruzione, questa si propagherà da Svartsengi verso il cratere Sundhnúkur, tra Stóra-Skógfell e Hagafell, la fascia che ho indicato con la linea rossa dove la crosta è più debole. I settori più a rischio sono infatti quelli più scuri. Come si vede Grindavik è ancora nella fascia di maggiore pericolosità, anche se dal 19 febbraio è stato tolto l'ordine di evacuazione, consentendo il ritorno degli abitanti e la ripresa delle attività economiche
Il segnale precursore principale dell’eruzione sarà un improvviso aumento dell’intensa attività sismica con molti terremoti localizzati e di piccola magnitudo e l’evento potrebbe iniziare con poco o nessun preavviso: n uno scenario in cui il magma risale verso la superficie direttamente da Svartsengi, si stima che i primi segnali verrebbero identificati 4-7 ore prima che il magma raggiunga la superficie e l'ultima volta sono state poche ore e per di più nella notte.



mercoledì 7 febbraio 2024

la interessante proposta di un aggiornamento nella scala del tempo geologica della Luna


Una scala del tempo geologico di un pianeta è un sistema cronologico con il quale, definendo una sequenza temporale ricavata da osservazioni geologiche, si correlano nel tempo gli avvenimenti avvenuti in un pianeta e ne mostra l'evoluzione progressiva. Un team sino-americano ha proposto un aggiornamento della scala del tempo geologico della Luna, ideata grazie ai progressi della ricerca post-Apollo. Questa nuova scala fornisce un quadro integrato per rappresentare l’evoluzione della Luna e ha importanti implicazioni per lo studio geologico di altri pianeti di tipo terrestre.

La scala temporale della Luna fu stabilita mezzo secolo fa ai tempi delle missioni Apollo, ma negli ultimi decenni una vasta gamma di studi ha significativamente ampliato la nostra comprensione dell’evoluzione geologica lunare globale utilizzando dati con copertura spaziale e risoluzione molto migliori rispetto a quelle osservazioni pionieristiche. Inoltre le missioni Apollo hanno riguardato la faccia visibile della Luna, per cui viene considerata poco la sua faccia nascosta, che invece è quella in dove si trovano le zone più antiche e primordiali (Jolliff et al., 2000).
Grazie quindi a questi notevoli miglioramenti sono stati proposti due importanti aggiornamenti della scala temporale degli eventi lunari, anticipata in Ji et al (2022) e spiegata più dettagliatamente in Guo et al (2024): 
  • il primo consiste in un “rinnovo” della cronologia iniziale della storia lunare
  • il secondo il raggruppamento delle varie unità temporali, anche quelle più recenti, in tre eoni

la cronostratigrafia lunare attuale con il tipo di avvenimenti principali





LA CRONOLOGIA DEGLI INIZI DELLA STORIA LUNARE (IL PRE-NECTARIANO). Fino ad oggi quanto avvenuto prima del Nectariano è stato definito pre-Nectariano e vede due fasi distinte ma che non erano state ancora divise formalmente, ben indicate dalla tabella qui sopra: 
  • una fase iniziale in cui la superficie del nostro satellite è completamente coperta da un oceano di magma (che è avvenuta anche sulla Terra
  • una seconda in cui, cristallizzatasi la superficie, si formano una trentina di crateri da impatto particolarmente evidenti (fino a quando c’era l’oceano di magma le tracce degli impatti venivano perse presto). 
Il limite fra le due fasi corrisponde all’impatto del corpo che ha provocato la formazione del del grande (anzi, direi enorme perché ha un diametro di 2.500 km!) cratere di Aitken – Polo sud, posto al polo sud lunare. È praticamente invisibile dalla Terra essendo quasi integralmente nella faccia nascosta (se ne vede solo delle alture corrispondenti a parte del suo bordo) ed è probabilmente la più antica struttura da impatto lunare riconosciuta (Hiesinger et al., 2012). 
La formazione del cratere Aiken – Polo Sud per diversi Autori, come ad esempio Orgel et al (2018) è avvenuta tra i 4,2 e i 4,3 miliardi di anni. Essendo il più grande cratere lunare da impatto, i suoi ejecta, diffusi in buona parte della superficie lunare, sono indicati come formazione di Das. Ma questo limite non aveva ancora un ruolo preciso e definito chiaramente nella cronostratigrafia lunare.
Secondo Guo et al (2024) invece la formazione di Das evidenzia un fatto epocale e cioè dopo la solidificazione della superficie dell’oceano di magma iniziale si tratta, al momento, dello strato più antico prodotto da processi non dovuti all’attività tettonica e magmatica della Luna stessa. Pertanto lo usano come marker stratigrafico per dividere il Pre-Nectriano in due periodi differenti, il Magma-oceaniano e il successivo Aitkeniano (dal nome, appunto del cratere Aitken – Polo Sud) (NB: chiaramente la deposizione della Formazione di Das costituisce un limite massimo dell'età in cui ha cessato di esistere l'oceano di magma).


IL NUOVO RAGGRUPPAMENTO DI TUTTE LE ETÀ DELLA CRONOSTRATIGRAFIA LUNARE. Dopo questa essenziale ridefinizione cronologica delle fasi iniziali della storia lunare, Guo et al (2024) hanno diviso la storia della Luna in tre eoni (sulla Luna Ere ed Eoni possono essere considerati sinonimi), ciascuno dei quali rappresenta fasi distinte dell’evoluzione lunare in base al livello di interazione fra processi endogeni ed esogeni. 
Questo nuovo schema mira a fornire una comprensione più integrata dell’evoluzione geologica della Luna, soprattutto alla luce dei progressi successivi al periodo delle missioni Apollo.

L'Eone Eolunare, datato da 4,52 a 4,31 miliardi di anni fa, segna il periodo della formazione dell'oceano di magma della Luna, della sua differenziazione e della solidificazione della crosta primaria. Questo eone, prevalentemente modellato da forze endogene, comprende il solo Magma-oceaniano e finisce con la deposizione della formazione di Das.

Il successivo Eone Paleolunare, che si estende da 4,31 a 3,16 miliardi di anni fa, ha visto un equilibrio tra processi endogeni, come le attività vulcaniche, e quelli esogeni, come eventi di impatto significativo. Rappresenta una fase in cui le forze interne ed esterne modellano in modo significativo la superficie lunare e comprende il nuovo periodo Aikteniano, il Nectariano e l’Imbriano.
Da notare che il Pre-Nectariano oltre che essere stato diviso in due periodi diversi, ricade in questa classificazione addirittura in due eoni diversi, l’Eolunare e il Paleolunare.

Il più recente, l'Eone Neolunare, che iniza 3,16 miliardi di anni fa e si estende fino ad oggi, è caratterizzato dalla predominanza di processi esogeni, con una sempre più marcata riduzione delle attività vulcaniche, mentre gli eventi di impatto hanno giocato il ruolo più significativo nell’alterare il paesaggio lunare.

L’introduzione di questo nuovo schema di scala temporale lunare, comprendente tre Eoni e sei Periodi, fornisce un quadro sistematico per descrivere la storia evolutiva della Luna e sottolinea l’importanza di comprendere sia i processi interni che quelli esterni nel modellare la geologia lunare. Questo approccio non solo migliora la nostra comprensione del passato della Luna, ma offre anche un modello per studiare l'evoluzione geologica di altri pianeti terrestri.
Ji et al (2022) hanno utilizzato questo schema nella mappa geologica globale lunare in scala 1:2,5.000.000, dimostrando la sua applicazione pratica negli studi lunari. 

BIBILIOGRAFIA

Guo et al (2024). A lunar time scale from the perspective of the Moon’s dynamic evolution Sci China Earth Vol.67 No.1 249 

Hiesinger et al (2012). New crater size-frequency distribution mea- surements of the South Pole-Aitken basin. In: 43rd Lunar and Planetary Science Conference. 43: 2863

Ji et al (2022) The 1:2,500,000-scale geologic map of the global Moon. Science Bulletin 67 (2022) 1544–1548

Jolliff et al (2000). Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res, 105: 4197–4216

Orgel et al (2018). Ancient bombardment of the inner solar system: Reinvestigation of the “fingerprints” of different impactor populations on the lunar surface. J Geophys Res-Planets, 123: 748–762

Wilhelms et al (1987). The Geologic History of the Moon. Washington DC: U.S. Government Printing Office